尚光网 本站首页 本所首页 联系我们
CSCDChakraborty A, 2006, JPN J APPL PHYS 1, V45, P739, DOI 10.1143/JJAP.45.739; Chakraborty A, 2004, APPL PHYS LETT, V85, P5143, DOI 10.1063/1.1825612; Chakraborty A, 2005, Jpn J Appl Phys, V44, P173; COCKAYNE B, 1981, J CRYST GROWTH, V54, P546, DOI 10.1016/0022-0248(81)90511-X; DIKME Y, 2005, PHYS SAT SOL C, V7, P2161; Gerlach J W, 2006, Appl Phys Lett, V88, P011602; Haskell BA, 2005, J ELECTRON MATER, V34, P357, DOI 10.1007/s11664-005-0110-9; Hellman ES, 1997, MRS INTERNET J N S R, V2, pU32; Klemenz C, 2000, J CRYST GROWTH, V211, P62, DOI 10.1016/S0022-0248(99)00831-3; MAREZIO M, 1965, ACTA CRYSTALLOGR, V19, P396, DOI 10.1107/S0365110X65003511; MAREZIO M, 1966, J CHEM PHYS, V44, P3348, DOI 10.1063/1.1727236; Maruska HP, 2003, OPTO-ELECTRON REV, V11, P7; MARUSKA HP, 2003, IEEE C P IPRM SANT B, P567; Reed MD, 2005, J CRYST GROWTH, V274, P14, DOI 10.1016/j.jcrysgro.2004.09.079; REMEIKA JP, 1964, APPL PHYS LETT, V5, P180, DOI 10.1063/1.1754107; Sin-Ichi Hirano, 1987, J Am Ceram Soc, V70, P171; Sun YJ, 2002, J APPL PHYS, V92, P5714, DOI 10.1063/1.1513874; Waltereit P, 2000, NATURE, V406, P865, DOI 10.1038/35022529; Waltereit P, 2000, J CRYST GROWTH, V218, P143, DOI 10.1016/S0022-0248(00)00605-9; Waltereit P, 1999, APPL PHYS LETT, V75, P2029, DOI 10.1063/1.124905; Waltereit P, 2001, J CRYST GROWTH, V227, P437, DOI 10.1016/S0022-0248(01)00739-4; Waltereit P, 2000, PHYS STATUS SOLIDI A, V180, P133, DOI 10.1002/1521-396X(200007)180:1<133::AID-PSSA133>3.0.CO;2-A; Waltereit P, 2001, (Al,Ga,In)N heterostructures grown along polar and non-polar directions by plasma-assisted molecular beam epitaxy; Wang LJ, 2006, PHYS STATUS SOLIDI A, V203, P1663, DOI 10.1002/pssa.200565136; Xu K, 1999, PHYS STATUS SOLIDI A, V176, P589, DOI 10.1002/(SICI)1521-396X(199911)176:1<589::AID-PSSA589>3.0.CO;2-J; [邹军 Zou Jun], 2005, [物理学报, Acta Physica Sinica], V54, P4269; [邹军 Zou Jun], 2005, [硅酸盐学报, Journal of the Chinese Silicate Society], V33, P564; [邹军 Zou Jun], 2005, [光学学报, Acta Optica Sinica], V25, P949286760213431241激光与光电子学进展36gamma-LiAlO2与GaN的晶格失配很小,易于分离,在其(100)面上能生长出无极性的GaN,是一种很有希望的GaN衬底材料.结合gamma-LiAlO2的基本性质,详细介绍了gamma-LiAlO2衬底上用各种方法生长GaN的研究进展.2006gamma-LiAlO2; GaN film; gamma-LiAIO2; nonpolar LEDgamma-LiAIOj, as a very promising substrate, shows small lattice mismatch with GaN and can separate from GaN easily, Most importantly, nonpolar M-plane GaN can be grown on y-UAIO2 (100) plane. Combined with basic properties of gamma-LiAIO2, the research developments of GaN grown on gamma-LlAIO2 substrate by different methods are reviewed in detail.Developments of GaN Grown on gamma- LiAlO2 Substrate期刊论文gamma-LiAlO2衬底上生长GaN的研究进展ChineseGaN薄膜; 非极性发光二极管黄涛华; 邹军; 周健华; 王军; 张连翰; 周圣明 CSCD:2630042
中文题目: gamma-LiAlO2衬底上生长GaN的研究进展
外文题目: Developments of GaN Grown on gamma- LiAlO2 Substrate
作者: 黄涛华; 邹军; 周健华; 王军; 张连翰; 周圣明
刊名: 激光与光电子学进展
年: 2006 卷: 43 期: 12 页: 36--41
中文关键词:
GaN薄膜; 非极性发光二极管
英文关键词:
gamma-LiAlO2; GaN film; gamma-LiAIO2; nonpolar LED
中文摘要:
英文摘要:
文献类型: 期刊论文
正文语种: Chinese
收录类别: CSCD  
全文传递服务
clickdetails
页面点击量: 2
文章下载量: 1
visitlog
友情链接:
  上海大恒公司
  南京先进激光技术院
  光学产品库
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)