尚光网 本站首页 本所首页 联系我们
10.7498/aps.67.20171877SCIAndre ML, 1999, FUSION ENG DES, V44, P43, DOI 10.1016/S0920-3796(98)00265-8; Blackwell BD, 2012, PLASMA SOURCES SCI T, V21, DOI 10.1088/0963-0252/21/5/055033; Chen B S, 2012, LASER OPTOELECTRON P, V49; Guo A L, 2013, ACTA OPT SINICA, V33, P105; Huang WF, 2015, ACTA PHYS SIN-CH ED, V64, DOI 10.7498/aps.64.087801; Lin X D, 2002, THESIS; Liu Hongjie, 2006, Acta Photonica Sinica, V35, P1464; Liu L Q, 2001, NATL YOUNG ACAD EXCH, P387; Manes KR, 2016, FUSION SCI TECHNOL, V69, P146, DOI 10.13182/FST15-139; Peng X Y, 2008, THESIS; Stolz C J, 2007, P SOC PHOTO-OPT INS, V6834; Sukharev SA, 1999, P SOC PHOTO-OPT INS, V3492, P12, DOI 10.1117/12.354214; Sun XY, 2014, ACTA PHYS SIN-CH ED, V63, DOI 10.7498/aps.63.134201; Wan D J, 2007, THESIS; Zheng W, 2012, P SOC PHOTO-OPT INS, V8417; Zheng W G, 2014, LOAD CAPACITY RELATE, P37; Zheng WG, 2008, J PHYS CONF SER, V112, DOI 10.1088/1742-6596/112/3/032009; Zhou LD, 2011, ACTA PHYS SIN-CH ED, V60; Zhou LD, 2009, ACTA PHYS SIN-CH ED, V58, P6279; Zhou Lidan, 2009, High Power Laser and Particle Beams, V21, P326; Zhu J Q, 2006, CHINESE J NATURE, V28, P271; Zhuang Dakui, 2002, Acta Optica Sinica, V22, P582226941970672物理学报高功率激光驱动器光路设计要考虑像传递、鬼像规避和杂散光管理等多项优化措施.基于衍射光学传播理论,从输出负载能力提升的角度研究大口径光学元件波前特性对驱动器光路设计参数优化的影响.研究表明,驱动器末级光路的排布间隔如果控制在6 m以上,将非常有助于提高激光驱动器的输出负载能力.一般情况下,波前峰谷值达到0.34lambda的单块大口径光学元件能使高功率激光的近场光束质量最大下降约10%,达到1.36lambda后最大下降约21%;波前分布特性不同的多片大口径光学元件的波前相消叠加有利于降低中频波前部分对装置负载能力的影响,但是,大口径光学元件的非线性效应会加重中频波前对装置输出负载能力的影响;在限定大口径元件损伤阈值20 J/cm~2的前提下,光路排布紧凑的激光驱动器末级输入激光通量控制在16.8 J/cm~2之下不易损伤光学元件.相对宽松的光路设计可以进一步提高末级输出激光的平均通量水平,非常有利于激光驱动器装置输出负载能力的提升.2018diffraction optics; component wavefront; optical layout designOptical path design of high power laser facilities should consider several optimization measures such as those that are related to image transmission, ghost avoidance, and stray light management. According to the diffraction optical propagation theory, we study the the influences of wavefront characteristics of large aperture optical components on optimizing the design parameters of optical path in view of increasing the output load. The results show that the arrangement interval of the last stage optical drive can be very useful in improving the output load of the laser facilities if it is controlled to be over 6 m long. In general, a large aperture optical element with a phase error peak value of 0.34 lambda can reduce the near field beam quality of a high-power laser by about 10% and give rise to a maximum decrease of about 21% when the phase error reaches 1.36 lambda. Superposition of multiple optical elements with different phase error distribution characteristics can reduce the negative effect of the mid frequency phase error. However, the nonlinear effect of large aperture optical components can aggravate the influence of the intermediate frequency phase error on the damage resistance capacity of the device. Under the premise that the damage threshold of the large caliber optical element is limited to 20 J/cm(2), the using of a laser facility with a compact optical path, with an input laser energy density controlled to be below 16.8 J/cm(2), will avoid damaging the optical components efficiently. A relatively flexible optical layout can further increase the average energy density of the final output laser and is very beneficial to the enhancing of the output load capacity of the laser facility.Influence of phase error of optical elements on optical path design of laser facilities期刊论文光学元件波前畸变对驱动器光路设计的影响Chinese衍射光学; 元件波前; 光路设计徐林波; 卢兴强; 雷泽民24201 WOS:000425271700007
中文题目: 光学元件波前畸变对驱动器光路设计的影响
外文题目: Influence of phase error of optical elements on optical path design of laser facilities
作者: 徐林波; 卢兴强; 雷泽民
刊名: 物理学报
年: 2018 卷: 67 期: 2 文章编号:24201
中文关键词:
衍射光学; 元件波前; 光路设计
英文关键词:
diffraction optics; component wavefront; optical layout design
中文摘要:
英文摘要:
文献类型: 期刊论文
正文语种: Chinese
收录类别: SCI  
DOI: 10.7498/aps.67.20171877
全文传递服务
clickdetails
页面点击量: 2
文章下载量: 1
visitlog
友情链接:
  上海大恒公司
  南京先进激光技术院
  光学产品库
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)