尚光网 本站首页 本所首页 联系我们
10.1017/hpl.2015.34SCIBaksht EH, 2005, P SOC PHOTO-OPT INS, V6263, P26316, DOI 10.1117/12.677461; Benchea RE, 2013, ANAL METHODS-UK, V5, P3650, DOI 10.1039/c3ay40389k; Bychkov V, 2015, PROG ENERG COMBUST, V47, P32, DOI 10.1016/j.pecs.2014.10.001; DISHINGTON RH, 1974, APPL OPTICS, V13, P2300, DOI 10.1364/AO.13.002300; EDWARDS JG, 1967, APPL OPTICS, V6, P837, DOI 10.1364/AO.6.000837; EFTHYMIOPOULOS T, 1977, APPL OPTICS, V16, P70, DOI 10.1364/AO.16.000070; Eliezer S, 2013, HIGH POWER LASER SCI, V1, P44, DOI 10.1017/hpl.2013.5; Elloumi H, 2004, J QUANT SPECTROSC RA, V86, P361, DOI 10.1016/j.jqsrt.2003.12.003; EMMETT JL, 1964, J APPL PHYS, V35, P2601, DOI 10.1063/1.1713807; Florido R, 2014, PHYS PLASMAS, V21, DOI 10.1063/1.4898329; Gus'kov SY, 2014, J EXP THEOR PHYS+, V119, P958, DOI 10.1134/S1063776114110077; GUSINOW MA, 1975, APPL OPTICS, V14, P2645, DOI 10.1364/AO.14.002645; HOLZRICHTER JF, 1969, APPL OPTICS, V8, P1459, DOI 10.1364/AO.8.001459; Hu SX, 2015, PHYS PLASMAS, V22, DOI 10.1063/1.4917477; Jacobsen DA, 2004, P SOC PHOTO-OPT INS, V5524, P295, DOI 10.1117/12.557893; Jia SL, 2013, PLASMA SCI TECHNOL, V15, P640, DOI 10.1088/1009-0630/15/7/07; Kim HJ, 2011, J ELECTR ENG TECHNOL, V6, P275, DOI 10.5370/JEET.2011.6.2.275; LAMA W, 1982, APPL OPTICS, V21, P654, DOI 10.1364/AO.21.000654; LINFORD GJ, 1994, APPL OPTICS, V33, P8333, DOI 10.1364/AO.33.008333; MARSHAK IS, 1963, APPL OPTICS, V2, P793, DOI 10.1364/AO.2.000793; Powell H. T., 1986, Proceedings of the SPIE - The International Society for Optical Engineering, V609, P78; POWELL HT, 1990, P SOC PHOTO-OPT INS, V1277, P103, DOI 10.1117/12.20583; Tian C, 2015, OPT EXPRESS, V23, P12362, DOI 10.1364/OE.23.012362; Tucker RJF, 2013, PROC SPIE, V8599, DOI 10.1117/12.2005137; Zainal R, 2010, AIP CONF PROC, V1250, P133, DOI 10.1063/1.34696172569400063High Power Laser Sci. Eng.2015absorption coefficient; current density; radiation model; xenon flash lamp; xenon plasmaEFFICIENCY; OPACITYUnderstanding the radiation model of a flash lamp is essential for the reflector design of a laser amplifier. Reflector design often involves several simplifying assumptions, like a point or Lambertian source; either of these assumptions may lead to significant errors in the output distribution. In practice, source non-idealities usually result in sacrificing the amplifier's gain coefficient. We propose a novel test technique for attaining the xenon flash lamp absolute spectral intensity at various angles of view, and then accurately predict radiation distributions and generate the reflector shape. It is shown that due to the absorption of emitted radiation by the lamp itself, the behavior of the radiation model at various wavelengths is different. Numerical results of xenon plasma absorption coefficient were compared with the measured data. A reasonable agreement was obtained for the absorption coefficient parameters. Thus, this work provides a useful analytical tool for the engineering design of laser amplifier reflectors using xenon flash lamps as pumps.http://www.opticsjournal.net/Journals/hpl.htmRadiation model of a xenon flash lamp in a laser amplifier pump cavity期刊论文EnglishWu, Yongzhong; Zhu, Jianqiang; Zhang, Zhixiang; Li, Yangshuaie31 WOS:000367194100001
外文题目: Radiation model of a xenon flash lamp in a laser amplifier pump cavity
作者: Wu, Yongzhong; Zhu, Jianqiang; Zhang, Zhixiang; Li, Yangshuai
刊名: High Power Laser Sci. Eng.
年: 2015 卷: 3 文章编号:e31
英文关键词:
absorption coefficient; current density; radiation model; xenon flash lamp; xenon plasma
EFFICIENCY; OPACITY
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1017/hpl.2015.34
全文链接: 点击进入
全文传递服务
clickdetails
页面点击量: 1
visitlog
友情链接:
  上海大恒公司
  南京先进激光技术院
  光学产品库
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)