尚光网 本站首页 本所首页 联系我们
10.1038/s41598-017-16971-5SCIAckermann W, 2007, NAT PHOTONICS, V1, P336, DOI 10.1038/nphoton.2007.76; Andriyash IA, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5736; Bilderback DH, 2005, J PHYS B-AT MOL OPT, V38, pS773, DOI 10.1088/0953-4075/38/9/022; Bucksbaum PH, 2015, PHYS TODAY, V68, P26, DOI 10.1063/PT.3.2845; Chen M, 2016, LIGHT-SCI APPL, V5, DOI 10.1038/lsa.2016.15; Chou S, 2016, PHYS REV LETT, V117, DOI 10.1103/PhysRevLett.117.144801; Corde S, 2013, REV MOD PHYS, V85, P1, DOI 10.1103/RevModPhys.85.1; Cormier-Michel E, 2011, PHYS REV SPEC TOP-AC, V14, DOI 10.1103/PhysRevSTAB.14.031303; Emma P, 2010, NAT PHOTONICS, V4, P641, DOI [10.1038/NPHOTON.2010.176, 10.1038/nphoton.2010.176]; Esarey E, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056505; Esarey E, 2009, REV MOD PHYS, V81, P1229, DOI 10.1103/RevModPhys.81.1229; Fuchs M, 2009, NAT PHYS, V5, P826, DOI 10.1038/NPHYS1404; Jackson J. D., 2002, CLASSICAL ELECTRODYN; JOSHI C, 1987, IEEE J QUANTUM ELECT, V23, P1571, DOI 10.1109/JQE.1987.1073557; Krause D., 2016, J LARGE SCALE RES FA, V2, pA62, DOI [10.17815/jlsrf-2-121, DOI 10.17815/JLSRF-2-121]; Katsouleas T., 1987, Particle Accelerators, V22, P81; KEINIGS R, 1987, PHYS FLUIDS, V30, P252, DOI 10.1063/1.866183; Kern J, 2014, NAT COMMUN, V5, DOI 10.1038/ncomms5371; Kiselev S, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.135004; Kneip S, 2010, NAT PHYS, V6, P980, DOI 10.1038/NPHYS1789; Kuschel S, 2016, PHYS REV ACCEL BEAMS, V19, DOI 10.1103/PhysRevAccelBeams.19.071301; Lamberti C, 2003, PHYS REV LETT, V91, DOI 10.1103/PhysRevLett.91.046101; Leemans WP, 2014, PHYS REV LETT, V113, DOI 10.1103/PhysRevLett.113.245002; Malka V, 2008, NAT PHYS, V4, P447, DOI 10.1038/nphys966; Neutze R, 2000, NATURE, V406, P752, DOI 10.1038/35021099; Pellegrini C, 2016, REV MOD PHYS, V88, DOI 10.1103/RevModPhys.88.015006; Rittershofer W, 2010, PHYS PLASMAS, V17, DOI 10.1063/1.3430638; Rousse A, 2004, PHYS REV LETT, V93, DOI 10.1103/PhysRevLett.93.135005; Rousse A, 2001, NATURE, V410, P65, DOI 10.1038/35065045; Rykovanov SG, 2016, PHYS REV ACCEL BEAMS, V19, DOI 10.1103/PhysRevAccelBeams.19.090703; Rykovanov SG, 2015, PHYS REV LETT, V114, DOI 10.1103/PhysRevLett.114.145003; Schlenvoigt HP, 2008, NAT PHYS, V4, P130, DOI 10.1038/nphys811; Schmuser P., 2008, ULTRAVIOLET SOFT XRA; Schnell M, 2013, NAT COMMUN, V4, DOI 10.1038/ncomms3421; Steinke S, 2016, NATURE, V530, P190, DOI 10.1038/nature16525; Stohr J., 1992, NEXAFS SPECTROSCOPY; TAJIMA T, 1979, PHYS REV LETT, V43, P267, DOI 10.1103/PhysRevLett.43.267; Tantawi S, 2014, PHYS REV LETT, V112, DOI 10.1103/PhysRevLett.112.164802; Thaury C, 2015, NAT COMMUN, V6, DOI 10.1038/ncomms7860; Thompson A., 2009, XRAY DATA BOOKLET; Tilborg J. V., 2015, PHYS REV LETT, V115; [徐涵 Xu Han], 2002, [计算物理, Chinese Journal of Computational Physics], V19, P3054262047777Sci Rep2017FREE-ELECTRON LASER; WAKEFIELD ACCELERATOR; DRIVEN; OPERATIONREORTSOM21744The possibility of utilizing plasma undulators and plasma accelerators to produce compact ultraviolet and X-ray sources, has attracted considerable interest for a few decades. This interest has been driven by the great potential to decrease the threshold for accessing such sources, which are mainly provided by a few dedicated large-scale synchrotron or free-electron laser (FEL) facilities. However, the broad radiation bandwidth of such plasma devices limits the source brightness and makes it difficult for the FEL instability to develop. Here, using multi-dimensional particle-in-cell (PIC) simulations, we demonstrate that a plasma undulator generated by the beating of a mixture of high-order laser modes propagating inside a plasma channel, leads to a few percent radiation bandwidth. The strength of the undulator can reach unity, the period can be less than a millimeter, and the number of undulator periods can be significantly increased by a phase locking technique based on the longitudinal tapering. Polarization control of such an undulator can be achieved by appropriately choosing the phase of the modes. According to our results, in the fully beam loaded regime, the electron current in the plasma undulator can reach 0.3 kA level, making such an undulator a potential candidate towards a table-top FEL.Plasma channel undulator excited by high-order laser modes期刊论文EnglishWang, J. W.; Schroeder, C. B.; Li, R.; Zepf, M.; Rykovanov, S. G.16884 WOS:000417025400065
外文题目: Plasma channel undulator excited by high-order laser modes
作者: Wang, J. W.; Schroeder, C. B.; Li, R.; Zepf, M.; Rykovanov, S. G.
刊名: Sci Rep
年: 2017 卷: 7 文章编号:16884
英文关键词:

FREE-ELECTRON LASER; WAKEFIELD ACCELERATOR; DRIVEN; OPERATION
英文摘要:
文献类型: 期刊论文
正文语种: English
收录类别: SCI  
DOI: 10.1038/s41598-017-16971-5
全文传递服务
clickdetails
页面点击量: 2
文章下载量: 1
visitlog
友情链接:
  上海大恒公司
  南京先进激光技术院
  光学产品库
版权所有 © 2009 中国科学院上海光学精密机械研究所 沪ICP备05015387号
主办:中国科学院上海光学精密机械研究所 上海市嘉定区清河路390号(201800)